Cell division and phenotypic regression of proximal tubular cells in response to uranyl acetate insult in rats.

نویسندگان

  • Yoshihide Fujigaki
  • Masanori Sakakima
  • Yuan Sun
  • Tomoyuki Fujikura
  • Takayuki Tsuji
  • Hideo Yasuda
  • Akira Hishida
چکیده

BACKGROUND We examined whether dedifferentiation is necessary for cell division of proximal tubule (PT) cells after acute PT injury. METHODS Rats were injected with a low (0.2 mg/kg) or high (4 mg/kg) dose of uranyl acetate (UA) to induce acute PT injury. Proliferating PT cells were labelled with bromodeoxyuridine (BrdU) before sacrifice. Renal tissues were examined by double labelling of BrdU and megalin, aquaporin 1 (AQP1), Na(+)-K(+)ATPase or vimentin, and by immunoelectron microscopy for BrdU+ cells. RESULTS Under normal conditions, BrdU+ PT cells were positive for the PT phenotype (megalin-, AQP1- and Na(+)-K(+)ATPase positive and vimentine negative, a mesenchymal marker). Low-dose UA induced focal PT injury, and BrdU+ initially proliferating PT cells were found in the proximal three quarters of the S3 segment of nephron as early as 12 h, which maintained the PT phenotype and were vimentin negative. Proliferating PT cells showed low expression of the PT cell protein phenotype from Day 2 to Day 5 with vimentin expression from Day 2. High-dose UA induced severe PT injury in the proximal three quarters of the S3 segment by Day 5. BrdU+ initially proliferating PT cells, which were found in distal areas of the S3 segment as early as Day 2, showed low expression of the PT protein phenotype but were vimentin positive. Immunoelectron microscopy showed mature PT morphology for BrdU+ PT cells in control rats. BrdU+ initially proliferating PT cells showed a relatively mature phenotype after low-dose UA in- sult but an immature phenotype after high-dose UA insult. CONCLUSIONS PT cells can initiate cell division without de- differentiation after mild PT injury by low-dose UA insult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells.

Rats that have recovered from severe proximal tubule (PT) injury induced by uranyl acetate (UA), a toxic stimulus, developed resistance to subsequent UA treatment. We investigated cell cycle status and progression in PT cells in relation to this acquired resistance. Fourteen days after pretreatment with saline (vehicle group) or UA [acute kidney injury (AKI) group], rats were injected with UA o...

متن کامل

Kinetics and characterization of initially regenerating proximal tubules in S3 segment in response to various degrees of acute tubular injury.

BACKGROUND We examined kinetics and characterization of regenerating proximal tubule (PT) cells after various degrees of tubular injury in S3 segments of PT and assessed label-retaining slow cycling cells in S3. METHODS PT injury was induced by different doses of uranyl acetate (UA) injection into rats, and initially regenerating PTs were identified by in vivo bromodeoxyuridine (BrdU)-labelli...

متن کامل

Uranium XAFS analysis of kidney from rats exposed to uranium

The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U LIII-e...

متن کامل

A high ratio of G1 to G0 phase cells and an accumulation of G1 phase cells before S phase progression after injurious stimuli in the proximal tubule

Proximal tubule (PT) cells can proliferate explosively after injurious stimuli. To investigate this proliferative capacity, we examined cell cycle status and the expression of cyclin-dependent kinase inhibitor p27, a G1 phase mediator, in PT cells after a proliferative or injurious stimulus. Rats were treated with lead acetate (proliferative stimulus) or uranyl acetate (UA; injurious stimulus)....

متن کامل

Uranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane potential collapse in the Human Dermal Fibroblast Primary Cells

   Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 24 9  شماره 

صفحات  -

تاریخ انتشار 2009